class: center, middle, inverse, title-slide # Ellipse and its properties ## Analytic Geometry ### Academy of Mathematics ###
High School UPAEP Angelópolis ### Fall 2022 --- class: inverse, center, middle # Geometrical elements of an ellipse --- class: middle # Geometrical elements of an ellipse (1/9) <img src="horizontal-ellipse.png" width="90%" style="display: block; margin: auto;" /> --- # Geometrical elements of an ellipse (2/9) ## Warning!! <span style="font-size:28px"> The position of the geometrical elements **depend on the position of the ellipse**: horizontal or vertical. .pull-left[ </br> </br> <img src="horizontal-ellipse.png" width="110%" style="display: block; margin: auto;" /> ] .pull-right[ <img src="vertical-ellipse.png" width="110%" style="display: block; margin: auto;" /> ] --- # Geometrical elements of an ellipse (3/9) .pull-left[ <span style="font-size:27px"> The elements of an ellipse are: - <span style="font-size:27px"> The **center** `\(\color{red}{C}(\color{green}{h},\color{purple}{k})\)`: it is a point in the plane </br> - <span style="font-size:27px"> The **major axis**: it is the largest segment that passes through the center. - <span style="font-size:27px"> The **vertices** `\(\color{orange}{V_1}\)` and `\(\color{orange}{V_2}\)`: they are the _endpoints_ of the major axis. ] .pull-right[ </br> </br> <img src="horizontal-ellipse.png" width="130%" style="display: block; margin: auto;" /> ] --- # Geometrical elements of an ellipse (4/9) .pull-left[ <span style="font-size:27px"> We define $$ `\begin{aligned} {\large \color{orange}{a}} & = \text{distance between the}\\ & \, \,\,\quad \text{center and a vertex}\\ & = d(\color{red}{C}, \color{orange}{V_1}) \\ & = d(\color{red}{C}, \color{orange}{V_2}) \end{aligned}` $$ - <span style="font-size:27px"> Taking in consideration the previous value we get that **the length of the major axis** is `\({\large \color{darkorange}{2a}}\)`. ] .pull-right[ </br> </br> <img src="horizontal-ellipse.png" width="130%" style="display: block; margin: auto;" /> ] --- # Geometrical elements of an ellipse (5/9) .pull-left[ </br> </br> - <span style="font-size:27px"> The **minor axis**: it is the shortest segment that passes through the center. - <span style="font-size:27px"> The **covertices** `\(\color{darkcyan}{B_1}\)` and `\(\color{darkcyan}{B_2}\)`: they are the _endpoints_ of the minor axis. ] .pull-right[ </br> </br> <img src="horizontal-ellipse.png" width="130%" style="display: block; margin: auto;" /> ] --- # Geometrical elements of an ellipse (6/9) .pull-left[ <span style="font-size:27px"> We define $$ `\begin{aligned} {\large \color{darkcyan}{b}} & = \text{distance between the}\\ & \, \,\,\quad \text{center and a covertex}\\ & = d(\color{red}{C}, \color{darkcyan}{B_1}) \\ & = d(\color{red}{C}, \color{darkcyan}{B_2}) \end{aligned}` $$ - <span style="font-size:27px"> Taking in consideration the previous value we get that **the length of the minor axis** is `\({\large \color{darkcyan}{2b}}\)`. ] .pull-right[ </br> </br> <img src="horizontal-ellipse.png" width="130%" style="display: block; margin: auto;" /> ] --- # Geometrical elements of an ellipse (7/9) .pull-left[ <span style="font-size:27px"> The **foci** `\(\color{blue}{F_1}\)` and `\(\color{blue}{F_2}\)` are two points ON the major axis. <span style="font-size:27px"> To find the location of the foci, we consider the following distance: $$ `\begin{aligned} {\large \color{blue}{c}} & = \text{distance between the}\\ & \, \,\,\quad \text{center and a focus}\\ & = d(\color{red}{C}, \color{blue}{F_1}) \\ & = d(\color{red}{C}, \color{blue}{F_2}) \end{aligned}` $$ ] .pull-right[ </br> </br> <img src="horizontal-ellipse.png" width="130%" style="display: block; margin: auto;" /> ] --- # Geometrical elements of an ellipse (8/9) .pull-left[ </br> </br> <span style="font-size:30px"> How `\(\color{darkorange}{a}\)`, `\(\color{darkcyan}{b}\)`, and `\(\color{blue}{c}\)` are related? </br> <span style="font-size:40px"> $$ \color{blue}{c}^{2} = \color{darkorange}{a}^{2} - \color{darkcyan}{b}^{2} $$ ] .pull-right[ </br> </br> <img src="horizontal-ellipse.png" width="130%" style="display: block; margin: auto;" /> ] --- class: middle # Geometrical elements of an ellipse (9/9) <img src="vertical-ellipse.png" width="70%" style="display: block; margin: auto;" /> --- class: inverse, center </br> <br> </br> <span style="font-size:35px;color:white"> PART I <span style="font-size:35px;color:white"> Standard equation of the ellipse --- # Ellipse in standard form (1/2) </br> <span style="font-size:27px"> What do we need to know to find the standard equation of an ellipse? .pull-left[ </br> - <span style="font-size:30px"> The **center** `\(\color{red}{C}(\color{green}{h}, \color{purple}{k})\)`. </br> - <span style="font-size:30px"> The value `\({\large \color{darkorange}{a}}\)` (called semi-major axis). ] .pull-right[ </br> - <span style="font-size:30px"> The value `\({\large\color{darkcyan}{b}}\)` (called semi-minor axis). - <span style="font-size:30px"> The **position** of the ellipse (horizontal or vertical) ] --- # Ellipse in standard form (2/2) ## Horizontal ellipse <span style="font-size:40px"> $$ \frac{(x-\color{green}{h})^{2}}{\color{darkorange}{a}^{2}} + \frac{(y-\color{purple}{k})^{2}}{\color{darkcyan}{b}^{2}} = 1 $$ <hr> ## Vertical ellipse <span style="font-size:40px"> $$ \frac{(x-\color{green}{h})^{2}}{\color{darkcyan}{b}^{2}} + \frac{(y-\color{purple}{k})^{2}}{\color{darkorange}{a}^{2}} = 1 $$ --- # Example 1 (1/2) <span style="font-size:28px"> **Problem 1** <span style="font-size:27px">Find the standard equation of the horizontal ellipse centered at `\(\color{red}{C}(\color{green}{5}, \color{purple}{-7})\)`, with major axis of length `\(18\)`, and minor axis of length `\(6\)`. </br> <span style="font-size:27px;color:blue">**Solution** <span style="font-size:27px"> First of all, let's write the information given in the statement of the problem: <span style="font-size:27px"> $$ `\begin{aligned} \text{center: }& C(\color{green}{5},\color{purple}{-7}), \\ \text{major axis: }& \color{darkorange}{2a}=\color{darkorange}{18} \\ \text{minor axis: }& \color{darkcyan}{2b}=\color{darkcyan}{6} \\ \text{position: }& \textbf{horizontal} \end{aligned}` $$ --- # Example 1(2/2) <span style="font-size:27px"> Then, we get `\(\color{darkorange}{a} = \frac{18}{2} = \color{darkorange}{9}\)`, and `\(\color{darkcyan}{b}= \frac{6}{2} = \color{darkcyan}{3}\)`. <span style="font-size:27px"> So, after subtituting into the standard equation (for the horizontal case), and reducing terms, we get: $$ `\begin{gathered} \frac{(x - \color{green}{5} )^{2}}{(\color{darkorange}{9})^{2}} + \frac{(y-(\color{purple}{-7}))^{2}}{(\color{darkcyan}{3})^{2}} = 1 \\ \mbox{} \\ \frac{(x - \color{green}{5} )^{2}}{\color{darkorange}{81}} + \frac{(y+\color{purple}{7})^{2}}{\color{darkcyan}{9}} = 1 \end{gathered}` $$ --- # Example 2 (1/2) <span style="font-size:28px"> **Problem 2** <span style="font-size:27px">Find the standard equation of the vertical ellipse centered at `\(\color{red}{C}(\color{green}{0}, \color{purple}{4})\)`, with major axis of length `\(10\)`, and minor axis of length `\(2\)`. </br> <span style="font-size:27px;color:blue">**Solution** <span style="font-size:27px"> Again, let's write the information given in the statement of the problem: <span style="font-size:27px"> $$ `\begin{aligned} \text{center: }& C(\color{green}{0},\color{purple}{4}), \\ \text{major axis: }& \color{darkorange}{2a}=\color{darkorange}{10} \\ \text{minor axis: }& \color{darkcyan}{2b}=\color{darkcyan}{2} \\ \text{position: }& \textbf{vertical} \end{aligned}` $$ --- # Example 2 (2/2) <span style="font-size:27px"> Then, we get `\(\color{darkorange}{a} = \frac{10}{2} = \color{darkorange}{5}\)`, and `\(\color{darkcyan}{b}= \frac{2}{2} = \color{darkcyan}{1}\)`. <span style="font-size:27px"> So, after subtituting into the standard equation (for the vertical case), and reducing terms, we get: $$ `\begin{gathered} \frac{(x - \color{green}{0} )^{2}}{(\color{darkcyan}{1})^{2}} + \frac{(y-\color{purple}{4})^{2}}{(\color{darkorange}{5})^{2}} = 1 \\ \mbox{} \\ \frac{x^{2}}{\color{darkcyan}{1}} + \frac{(y-\color{purple}{4})^{2}}{\color{darkorange}{25}} = 1 \\ \mbox{} \\ x^{2} + \frac{(y-\color{purple}{4})^{2}}{\color{darkorange}{25}} = 1 \end{gathered}` $$ --- # Example 3 .pull-left[ <span style="font-size:25px"> **Problem 3** <span style="font-size:25px"> Find the standard equation of the ellipse in the figure. <img src="ellipse02.png" width="100%" style="display: block; margin: auto;" /> ] .pull-right[ <span style="font-size:25px;color:blue"> **Solution** <span style="font-size:25px"> We note that `\(\color{red}{C}(\color{green}{4}, \color{purple}{-3})\)`. In addition, the position of the ellipse is vertical, and we identify that `\(\color{darkorange}{a} = \color{darkorange}{3}\)`, and `\(\color{darkcyan}{b}=\color{darkcyan}{2}\)`. So, we have the 4 elements to calculate the standard equation, and after the subtitution we obtain $$ `\begin{aligned} \frac{(x-\color{green}{4})^{2}}{(\color{darkcyan}{2})^{2}} + \frac{(y-(\color{purple}{-3}))^{2}}{(\color{darkorange}{3})^{2}} = 1 \\ \mbox{} \\ \frac{(x-\color{green}{4})^{2}}{\color{darkcyan}{4}} + \frac{(y+\color{purple}{3})^{2}}{\color{darkorange}{9}} = 1 \end{aligned}` $$ ] --- class: inverse, center </br> </br> </br> <span style="font-size:35px;color:white"> PART II <span style="font-size:35px;color:white"> General equation of the circle --- # From the standard equation to the general equation </br> <span style="font-size:27px"> Given an ellipse, to determine its **general equation**, we have to follow the next steps: - <span style="font-size:27px"> **Step 1**: Find the standard equation of the circle. - <span style="font-size:27px"> **Step 2**: Expand the binomials that appear. - <span style="font-size:27px"> **Step 3**: Add the fractions. Reduce terms. - <span style="font-size:27px"> **Step 4**: "Pass" the denominator to the right hand. - <span style="font-size:27px"> **Step 5**: "Pass" the constant on the right hand to the left side and simplify. --- # Example 4(1/3) .pull-left[ <span style="font-size:25px"> **Problem 4** <span style="font-size:25px"> Find the general equation of the ellipse in the figure. <img src="ellipse02.png" width="100%" style="display: block; margin: auto;" /> ] .pull-right[ <span style="font-size:25px;color:blue"> **Solution** <span style="font-size:25px"> **Step 1**: In the **Example 3** we saw that the standard equation of the ellipse is: <span style="font-size:25px"> $$ \frac{(x-\color{green}{4})^{2}}{\color{darkcyan}{4}} + \frac{(y+\color{purple}{3})^{2}}{\color{darkorange}{9}} = 1 $$ <span style="font-size:25px"> **Step 2**: Now, we expand the binomials to get <span style="font-size:25px"> $$ \frac{x^2 - 8x + 16}{4} + \frac{y^2 + 6x + 9}{9} = 1 $$ ] --- # Example 4 (2/3) <span style="font-size:25px"> **Step 3**: Now, let's add the fractions. We procced as follows: </br> <span style="font-size:25px"> $$ `\begin{gathered} \frac{x^2 - 8x + 16}{4} + \frac{y^2 + 6x + 9}{9} = 1 \\ \\ \frac{9(x^2 - 8x +16) + 4(y^2 + 6x + 9)}{36} = 1 \\ \\ \frac{9x^2 -72x + 144 + 4y^2 +24y + 36}{36} = 1 \\ \\ \frac{9x^2 + 4y^2 -72x + 24x + 180}{36} = 1 \end{gathered}` $$ --- # Example 4 (3/3) <span style="font-size:25px"> **Step 4**: Next, we "pass" the denominator to the left hand, this is: $$ `\begin{gathered} \frac{9x^2 + 4y^2 -72x + 24x + 180}{36} = 1 \\ \\ 9x^2 + 4y^2 -72x + 24x + 180 = 36 \end{gathered}` $$ <span style="font-size:25px"> **Step 5**: Finally, we reduce the constants: $$ `\begin{gathered} 9x^2 + 4y^2 -72x + 24x + 180 = 36 \\ \\ 9x^2 + 4y^2 -72x + 24x + 180 - 36 = 0 \\ \\ \color{red}{9x^2 + 4y^2 -72x + 24x + 144 = 0} \end{gathered}` $$ --- class: inverse, center </br> </br> </br> <span style="font-size:35px;color:white"> PART III <span style="font-size:35px;color:white"> Getting the key features of the ellipse from an equation --- # From the standard equation .pull-left[ <span style="font-size:25px"> Let's consider the equation $$ \frac{(x+4)^2}{4} + \frac{(y-5)^2}{9} = 1 $$ <span style="font-size:25px"> It looks like the **standard equation of an ellipse**: then, at least, we _look for_ the 4 key elements of an ellipse: - <span style="font-size:25px"> the **center** - <span style="font-size:25px"> the **position** (horizontal or vertical) - <span style="font-size:25px"> the **semi-major axis** `\({\large \color{darkorange}{a}}\)` - <span style="font-size:25px"> the **semi-minor axis** `\({\large \color{darkcyan}{b}}\)` ] .pull-right[ <span style="font-size:25px"> To find the elements we have to: - <span style="font-size:25px"> For the **center**: take the numbers with opposite sign that appears next to the variables `\(x\)` and `\(y\)`, respectively. - <span style="font-size:25px"> For the **position**: it is indicated by the variable over the largest denominator. - <span style="font-size:25px"> For the value of `\({\large \color{darkorange}{a}}\)`: take the square root of the largest denominator. - <span style="font-size:25px"> For the value of `\({\large \color{darkcyan}{b}}\)`: take the square root of the smallest denominator. ] --- # Example 5 (1/2) <span style="font-size:27px"> **Problem 5** <span style="font-size:27px"> Find the elements of the figure represented by the following equation $$ \frac{(x+4)^2}{4} + \frac{(y-5)^2}{9} = 1 $$ <span style="font-size:27px;color:blue"> **Solution**</span> <span style="font-size:27px"> We note that it is the standard equation of an ellipse. - <span style="font-size:27px"> The **center** of the ellipse is `\(\color{red}{C}(\color{green}{-4}, \color{purple}{5})\)`. Here, we just took the numbers next to `\(x\)` and `\(y\)`, respectively, with the opposite sign. - <span style="font-size:27px"> Because the largest denominator is `\(\color{darkorange}{9}\)`, and it is under the variable `\(\textbf{y}\)`, the ellipse is in **vertical position**. --- # Example 5 (2/2) - <span style="font-size:27px"> The largest denominator is `\(\color{darkorange}{9}\)`, then, we have that `\(\color{darkorange}{a} = \sqrt{9} = \color{darkorange}{3}\)`. - <span style="font-size:27px"> The smallest denominator is `\(\color{darkcyan}{4}\)`, then, we have that `\(\color{darkcyan}{b} = \sqrt{4} = \color{darkcyan}{2}\)`. </br> <span style="font-size:27px"> Then, the final answer is $$ `\begin{aligned} \text{center: }& C(\color{green}{-4},\color{purple}{5}), \\ \text{position: }& \textbf{vertical} \\ \text{semi-major axis: }& \color{darkorange}{a}=\color{darkorange}{3} \\ \text{semi-minor axis: }& \color{darkcyan}{b}=\color{darkcyan}{2} \end{aligned}` $$ --- # Example 6 <span style="font-size:27px"> **Problem 6** <span style="font-size:27px"> Find the elements of the figure represented by the following equation $$ \frac{ ( x-2 )^2}{25} + \frac{ ( y+5 )^2 }{5} = 1 $$ <span style="font-size:27px;color:blue"> **Solution**</span> <span style="font-size:27px"> We note that it is a standard equation of an ellipse. In this case, the final answer is $$ `\begin{aligned} \text{center: }& C(\color{green}{2},\color{purple}{-5}), \\ \text{position: }& \textbf{horizontal} \\ \text{semi-major axis: }& \color{darkorange}{a}=\color{darkorange}{5} \\ \text{semi-minor axis: }& \color{darkcyan}{b}=\color{darkcyan}{\sqrt{5}} \end{aligned}` $$ --- # From the general equation to the standard equation <span style="font-size:30px"> Consider the equation given by </br> <span style="font-size:30px">$$\color{darkred}{A}x^2 + \color{darkblue}{B}y^2+Cx+Dy+F=0 $$ </br> <span style="font-size:30px"> If `\(\color{darkred}{A}\)` and `\(\color{darkblue}{B}\)` **have the same sign**, then we _expect_ a **general equation of an ellipse**. <span style="font-size:30px"> In this case, the strategy is **transforming into the standard equation** by _completing squares_ for both `\(x\)` and `\(y\)`: later we just apply the strategy in the case of the standard equation. --- # Example 7 (1/4) <span style="font-size:27px"> **Problem 7** <span style="font-size:27px"> Find the key elements of the figure with equation given by </br> <span style="font-size:27px"> $$ 4x^2 + 25y^2 - 32x + 200y + 364 = 0 $$ </br> <span style="font-size:27px;color:blue"> **Solution**</span> <span style="font-size:27px"> We note that the coefficients of `\(x^2\)` and `\(y^2\)` have the same sign, then we _expect_ that it is the **general equation of an ellipse**. Then, the key elements that we are looking for are the **center**, the **position**, the **semi-major axis** `\(\color{darkorange}{a}\)`, and the **semi-minor axis** `\(\color{darkcyan}{b}\)`. --- # Example 7 (2/4) <span style="font-size:27px"> **Step 1**: Group the terms with the same variable, and move the constant to the right hand. <span style="font-size:27px"> $$ (\color{brown}{4x^2 - 32x}) + (\color{blue}{25y^2 + 200y }) = \textbf{-364} $$ </br> <span style="font-size:27px"> **Step 2**: Factor out the coefficients of squared terms. <span style="font-size:27px"> $$ \color{brown}{4}(x^2 - 8x) + \color{blue}{25}(y^2 + 8y ) = -364 $$ </br> <span style="font-size:27px"> **Step 3**: Make space for values on both sides to complete the squares. <span style="font-size:27px"> $$ \color{brown}{4}(x^2 - 8x \color{red}{+}\,\,\,\,\, ) + \color{blue}{25}(y^2 + 8y \color{red}{+} \,\,\,\,\, ) = -364 \color{red}{+} \color{brown}{4} (\,\,\,\,\, ) \color{red}{+} \color{blue}{25}(\,\,\,\,\, ) $$ --- # Example 7 (3/4) <span style="font-size:27px"> **Step 4**: Complete the perfect trinomial squares. Add the same values to the right side. <span style="font-size:27px"> $$ 4(x^2 - 8x + \color{brown}{16} ) + 25(y^2 + 8y + \color{blue}{16} ) = -364 + 4( \color{brown}{16} ) + 25( \color{blue}{16} ) $$ </br> <span style="font-size:27px"> **Step 5**: Multiply and add. <span style="font-size:27px"> $$ 4(x^2 - 8x + 16 ) + 25(y^2 + 8y + 16 ) = \textbf{100} $$ </br> <span style="font-size:27px"> **Step 6**: Rewrite trinomials as squared binomials. <span style="font-size:27px"> $$ 4(x - 4)^{2} + 25(y + 4)^{2} = 100 $$ --- # Example 7 (4/4) <span style="font-size:27px"> **Step 7**: Divide through by the constant on the right side to make it `\(1\)`. <span style="font-size:27px"> $$ \frac{ 4(x - 4)^{2} }{100} + \frac{ 25(y + 4)^{2} }{100} = \frac{100}{100} $$ <span style="font-size:27px"> **Step 8**: Simplify fractions. <span style="font-size:27px"> $$ \frac{ (x - 4)^{2} }{25} + \frac{ (y + 4)^{2} }{4} = 1 $$ <span style="font-size:27px"> **Final answer**: the key elements are $$ `\begin{aligned} \text{center: }& C(\color{green}{4},\color{purple}{-4}), \\ \text{position: }& \textbf{horizontal} \\ \text{semi-major axis: }& \color{darkorange}{a}=\color{darkorange}{5} \\ \text{semi-minor axis: }& \color{darkcyan}{b}=\color{darkcyan}{2} \end{aligned}` $$ --- class: inverse, center </br> </br> </br> <span style="font-size:35px;color:white"> PART IV <span style="font-size:35px;color:white"> Applications --- # Example 8 (1/8) <span style="font-size:27px"> Find all the geometrical elements of the ellipse with foci `\((15,-2)\)` and `\((3,-2)\)`, and covertices `\((9,6)\)` and `\((9,-10)\)`. Sketch this ellipse on the Cartesian plane. <span style="font-size:27px;color:blue"> **Solution**</span> <span style="font-size:27px"> As we have seen, all the elements depend on `\(4\)` of the geometrical elements of the ellipse: - <span style="font-size:27px"> the **center** - <span style="font-size:27px"> the value of `\(\color{darkorange}{a}\)` - <span style="font-size:27px"> the value of `\(\color{darkcyan}{b}\)` - <span style="font-size:27px"> the **position** of the ellipse <span style="font-size:27px"> So, let's find all of them. --- # Example 8 (2/8) ## The center <span style="font-size:27px"> We know that the center is the **midpoint of the minor axis**, but it is also the **midpoint of the segment that joins the foci**. .pull-left[ <span style="font-size:23px"> The foci are `\((15,-2)\)` and `\((3, -2)\)`, then, the midpoint is $$ `\begin{gathered} C\left( \frac{15 + 3}{2}, \frac{-2 + (-2)}{2} \right) \\ C\left( \frac{18}{2}, \frac{-4}{2} \right) \\ C(\color{green}{9}, \color{purple}{-2}) \end{gathered}` $$ ] .pull-right[ <span style="font-size:23px"> The _covertices_ `\((9,6)\)` and `\((9,-10)\)` are the _endpoints_ of the _minor axis_, then, the midpoint is found as $$ `\begin{gathered} C\left( \frac{9 + 9}{2}, \frac{6 + (-10)}{2} \right) \\ C\left( \frac{18}{2}, \frac{-4}{2} \right) \\ C(\color{green}{9}, \color{purple}{-2}) \end{gathered}` $$ ] .center[ <span style="font-size:27px"> In both cases we got that the **center** is `\(C(\color{green}{9}, \color{purple}{-2})\)`. ] --- # Example 8 (3/8) ## The value of `\(\color{darkcyan}{b}\)` <span style="font-size:27px"> In this problem we are given with the covertices `\(B_1(9,6)\)` and `\(B_2(9,-10)\)`, this is, the endopoints of the minor axis, then, we can get the **length of the minor axis**, which is equal to `\(\color{darkcyan}{2b}\)`. We have that $$ \color{darkcyan}{2b} = d(B_1 , B_2 ) = 16, $$ and from here, $$ \color{darkcyan}{b} = \frac{16}{2} = 8. $$ --- # Example 8 (4/8) ## The value of `\(\color{blue}{c}\)` <span style="font-size:27px"> In the statement of this problem we are given with both **foci** `\(F_1(15, -2)\)` and `\(F_2(3,-2)\)`. Using this information there are two possibilities to find the value of `\(\color{blue}{c}\)`. .pull-left[ <span style="font-size:27px"> Because the distance from the center to a focus is `\(\color{blue}{c}\)`, we know that the **distance between both foci** is `\(\color{blue}{2c}\)`. In this case: $$ \color{blue}{2c} = d (F_1, F_2) = 12 $$ ] .pull-right[ <span style="font-size:27px"> We know that the center is `\(C(9,-2)\)`, then $$ `\begin{gathered} \color{blue}{c} = d(F_1, C) = 6 \\ \color{blue}{c} = d(F_2, C) = 6 \end{gathered}` $$ ] .center[ <span style="font-size:27px"> In both cases we get that `\({\large \color{blue}{c} = \color{blue}{6}}\)`. ] --- # Example 8 (5/8) ## The value of `\(\color{darkorange}{a}\)` <span style="font-size:27px"> We already know that `\(\color{darkcyan}{b} = \color{darkcyan}{8}\)` and `\(\color{blue}{c} = \color{blue}{6}\)`. Furthermore, we know that $$ \color{blue}{c}^{2} = \color{darkorange}{a}^2 - \color{darkcyan}{b}^2, $$ then, isolating `\(a\)` we get $$ \color{darkorange}{a}^2 = \color{darkcyan}{b}^2 + \color{blue}{c}^{2} $$ <span style="font-size:27px"> Making subtitution we get $$ \color{darkorange}{a}^2 = \color{darkcyan}{8}^2 + \color{blue}{6}^2 = 64 + 36 = 100 $$ this is $$ {\large \color{darkorange}{a} = \color{darkorange}{10}}. $$ --- # Example 8 (6/8) ## The position of the ellipse <span style="font-size:27px"> In this problem we have at least two possibilities to look for position of the ellipse. .pull-left[ <span style="font-size:27px"> We note that the coordinates of both **foci** `\(F_1(15, -2)\)` and `\(F_2(3,-2)\)` only change in the first coordinate, this is, the position of the major axis (or the ellipse) has to be horizontal. ] .pull-right[ <span style="font-size:27px"> We know that the coordinates of both covertices `\((9,6)\)` and `\((9,-10)\)` are the endpoints of the minor axis, and they only change in the second coordinate. So the position of the minor axis is vertical, this is, the position of the major axis is horizontal.. ] .center[ <span style="font-size:27px"> In both cases, the position of the ellipse is **horizontal**. ] --- # Example 8 (7/8) <span style="font-size:27px"> The missing elements are the length of the major and minor axes, the vertices, and the standard equation. We get that $$ \color{darkorange}{2a} = \color{darkorange}{20} \text{ and } \color{darkcyan}{2b} = \color{darkcyan}{16}. $$ On the other hand, the vertices are $$ \color{darkorange}{V_1}( 19,-2) \text{ and } \color{darkorange}{V_2} = (-1, -2). $$ The standard equation is $$ \frac{(x-9)^2}{100} + \frac{(y+2)^2}{64} = 1. $$ Finally, we sketch the obtained ellipse on the next figure. --- class: clear <img src="ellipse-ex08.png" width="100%" style="display: block; margin: auto;" /> --- # Example 9 (1/4) <span style="font-size:27px"> Find all the geometrical elements of the figure represented by $$ \frac{(x+2)^2}{4} + \frac{(y+3)^2}{9} = 1. $$ Sketch this figure on the Cartesian plane. <span style="font-size:27px;color:blue"> **Solution**</span> <span style="font-size:27px"> We note that it is the standard equation of an ellipse. - <span style="font-size:27px"> The **center** of the ellipse is `\(\color{red}{C}(\color{green}{-2}, \color{purple}{-3})\)`. Here we just took the numbers next to `\(x\)` and `\(y\)`, respectively, with the opposite sign. - <span style="font-size:27px"> Because the largest denominator is `\(\color{darkorange}{9}\)`, and it is under the variable `\(\textbf{y}\)`, the ellipse is in **vertical position**. --- # Example 9 (2/4) - <span style="font-size:27px"> The largest denominator is `\(\color{darkorange}{9}\)`, then, we have that `\(\color{darkorange}{a} = \sqrt{9} = \color{darkorange}{3}\)`. This implies that the **length of the major axis** is `\(\color{darkorange}{2a} = \color{darkorange}{6}\)`. - <span style="font-size:27px"> The smallest denominator is `\(\color{darkcyan}{4}\)`, then, we have that `\(\color{darkcyan}{b} = \sqrt{4} = \color{darkcyan}{2}\)`. So, we get that the **length of the minor axis** is `\(\color{darkcyan}{2b} = \color{darkcyan}{4}\)`. - <span style="font-size:27px"> From the previous information, and using the fact that `\(\color{blue}{c}^{2} = \color{darkorange}{a}^2 - \color{darkcyan}{b}^2\)`, we obtain that $$ \color{blue}{c}^2 = \color{darkorange}{9} - \color{darkcyan}{4} = 5 $$ this is $$ \color{blue}{c} = \color{blue}{\sqrt{5}} $$ --- class: clear <img src="ellipse-ex09.png" width="70%" style="display: block; margin: auto;" /> --- # Example 9 (4/4) <span style="font-size:27px"> We know that the missing elements are both vertices, both covertices, and both foci. As we can identify from the previous figure, their coordinates are the following ones: - <span style="font-size:27px"> **vertices**: `\(\color{darkorange}{V_1(-2, 0)}\)` and `\(\color{darkorange}{V_2(-2, -6)}\)`. Here we use that `\(\color{darkorange}{a}\)` is the distance between the center `\(\color{red}{C}(\color{green}{-2}, \color{purple}{-3})\)` and a vertex. - <span style="font-size:27px"> **covertices**: `\(\color{darkcyan}{B_1(0, -3)}\)` and `\(\color{darkcyan}{B_2(-4, -3)}\)`. Here we use that `\(\color{darkcyan}{b}\)` is the distance between the center `\(\color{red}{C}(\color{green}{-2}, \color{purple}{-3})\)` and a covertex. - <span style="font-size:27px"> **foci**: `\(\color{blue}{F_1(-2, -3 + \sqrt{5}) }\)` and `\(\color{blue}{F_2 (-2, -3 -\sqrt{5}) }\)`. Here we use that `\(\color{blue}{c}\)` is the distance between the center `\(\color{red}{C}(\color{green}{-2}, \color{purple}{-3})\)` and a focus. --- # Example 10 (1/6) <span style="font-size:27px"> Find all the geometrical elements of the figure represented by $$ 9x^2 + 16y^2 -18x - 64 y -71 = 0. $$ Sketch this figure on the Cartesian plane. </br> <span style="font-size:27px;color:blue"> **Solution**</span> <span style="font-size:27px"> We note that the coefficients of `\(x^2\)` and `\(y^2\)` have the same sign, then we _expect_ that it is the **general equation of an ellipse**. <span style="font-size:27px"> Now, let's try to transform the general equation into the standard equation of an ellipse to get all the elements. --- # Example 10 (2/6) <span style="font-size:27px"> First we group the terms with the same variable $$ (\color{brown}{9x^2 - 18x}) + (\color{blue}{16y^2 - 64y}) = \textbf{71} $$ then we factorize the coefficients of `\(x^2\)` and `\(y^2\)`, respectively, $$ \color{brown}{9} (x^2 - 2x) + \color{blue}{16} (y^2 - 4y) = 71 $$ next we complete the perfect square trinomials on the left side, and we add the same values to the right side $$ `\begin{aligned} 9 (x^2 - 2x + \color{brown}{1}) + 16 (y^2 - 4y + \color{blue}{4}) & = 71 + 9 (\color{brown}{1}) + 16 (\color{blue}{4}) \\ 9 (x^2 - 2x + 1) + 16 (y^2 - 4y + 4) & = 71 + 9 + 64 \\ 9 (x^2 - 2x + 1) + 16 (y^2 - 4y + 4) & = 144 \end{aligned}` $$ --- # Example 10 (3/6) <span style="font-size:27px"> Now, we rewrite the trinomials as squared binomials on the left side, and multiply and add on the right side $$ 9 (x - 1)^2 + 16 (y - 2)^2 = 144 $$ Next, we divide through by the constant on the right side to make it `\(1\)`: $$ \frac{ 9(x-1)^2 }{144} + \frac{ 16 (y-2)^2 }{144} = \frac{144}{144} $$ and we simplify each fraction to get the standard equation: $$ \frac{ (x-1)^2 }{16} + \frac{ (y-2)^2 }{9} = 1 $$ --- # Example 10 (4/6) <span style="font-size:27px"> Let's use the standard equation to get all the elements of the ellipse: - <span style="font-size:27px"> The **center** is `\(\color{red}{C}(\color{green}{1}, \color{purple}{2})\)`. - <span style="font-size:27px"> Because the largest denominator is `\(\color{darkorange}{16}\)`, and it is under the variable `\(\textbf{x}\)`, the position of the ellipse is **horizontal**. - <span style="font-size:27px"> The value of `\(\color{darkorange}{a}^2 = \color{darkorange}{16}\)` implies that `\(\color{darkorange}{a}=\color{darkorange}{4}\)`. In particular, the **length of the major axis** is `\(\color{darkorange}{2a} = \color{darkorange}{8}\)`. - <span style="font-size:27px"> The value of `\(\color{darkcyan}{b}^2 = \color{darkcyan}{9}\)` implies that `\(\color{darkcyan}{a}=\color{darkcyan}{3}\)`. In particular, the **length of the major axis** is `\(\color{darkcyan}{2b} = \color{darkcyan}{6}\)`. - <span style="font-size:27px"> Now, we can get the value of `\(\color{blue}{c}\)` using the equation `\(\color{blue}{c}^2 = \color{darkorange}{a}^2 - \color{darkcyan}{b}^2\)`. In this case we obtain that `\(\color{blue}{c}^2 = \color{darkorange}{16} - \color{darkcyan}{9} = 7\)` this is $$ \color{blue}{c} = \color{blue}{\sqrt{7}}. $$ --- class: clear, middle <img src="ellipse-ex10.png" width="110%" style="display: block; margin: auto;" /> --- # Example 10 (6/6) <span style="font-size:27px"> We know that the missing elements are both vertices, both covertices, and both foci. As we can identify from the previous figure, their coordinates are the following ones: - <span style="font-size:27px"> **vertices**: `\(\color{darkorange}{V_1(5,2)}\)` and `\(\color{darkorange}{V_2(-1, 2)}\)`. Here we use that `\(\color{darkorange}{a}\)` is the distance between the center `\(\color{red}{C}(\color{green}{1}, \color{purple}{2})\)` and a vertex. - <span style="font-size:27px"> **covertices**: `\(\color{darkcyan}{B_1(1,5)}\)` and `\(\color{darkcyan}{B_2(1,-1)}\)`. Here we use that `\(\color{darkcyan}{b}\)` is the distance between the center `\(\color{red}{C}(\color{green}{1}, \color{purple}{2})\)` and a covertex. - <span style="font-size:27px"> **foci**: `\(\color{blue}{F_1(1 + \sqrt{7} , 2) }\)` and `\(\color{blue}{F_2 (1 -\sqrt{7}, 2) }\)`. Here we use that `\(\color{blue}{c}\)` is the distance between the center `\(\color{red}{C}(\color{green}{1}, \color{purple}{2})\)` and a focus. --- # Example 11 (1/8) <span style="font-size:30px"> An arch of a bridge is in the shape of a horizontal semiellipse. Its highest point is `\(8\)` meters, while its length is `\(18\)` meters. - <span style="font-size:30px"> Write an equation that represents this arch (the full ellipse). - <span style="font-size:30px"> How high is the arch at a point `\(4\)` meters away from the center horizontally? <span style="font-size:30px;color:blue"> **Solution** </span> <span style="font-size:30px"> Let's note that we are working with a horizontal (semi)ellipse, then the length in the statement is referred to the length of the major axis, and the _highest point_ corresponds to the distance between the center and a covertex of the ellipse. --- # Example 11 (2/8) <span style="font-size:30px"> We know: - <span style="font-size:30px"> The **length of the major axis** `\(\color{darkorange}{2a} = \color{darkorange}{18}\)`, then `\(\color{darkorange}{a} = \color{darkorange}{9}\)`. - <span style="font-size:30px"> The value `\(\color{darkcyan}{b} = \color{darkcyan}{8}\)`. - <span style="font-size:30px"> The **position** of the ellipse is _horizontal_. </br> .center[ <span style="font-size:30px"> **How do we get the center?** <span style="font-size:30px"> Because any explicit point is given in the statement, we can **choose** that location of the center: let's take the origin `\(\color{red}{C}(\color{green}{0}, \color{purple}{0})\)`. ] --- # Example 11 (3/8) </br> <span style="font-size:30px"> Then, using the previous information, the standard equation of the full ellipse is given by </br> <span style="font-size:35px"> $$ {\bf \frac{x^2}{\color{darkorange}{81}} + \frac{y^2}{ \color{darkcyan}{64}} = 1}. $$ --- class: clear, middle <img src="ellipse-ex11.png" width="110%" style="display: block; margin: auto;" /> --- # Example 11 (5/8) <span style="font-size:30px"> Now, because of the symmetry of the ellipse, to get the height of the arch at a point `\(4\)` meters away from the center horizontally, we just **consider a horizontal displacement to the right**. - <span style="font-size:30px"> We don't know the height, so we represent it by `\(\color{darkblue}{h}\)`. - <span style="font-size:30px"> Now, in the graphical representation we consider the point `\(\textbf{P}(4,\color{darkblue}{h})\)`. </br> .center[ <span style="font-size:30px"> **How do we get the value of** `\(\color{darkblue}{h}\)`? ] --- # Example 11 (6/8) .center[ <span style="font-size:33px;color:#D40828"> ATTENTION !!! ] <span style="font-size:30px"> A point **lies on** a FIGURE if its coordinates **satisfy** the equation that REPRESENTS the given figure. </br> <span style="font-size:30px"> The previous sentence means that if we subtitute the coordinates of the point into the equation we obtain an equality. --- # Example 11 (7/8) <span style="font-size:27px"> Because the point `\(\textbf{P}(4,\color{darkblue}{h})\)` lies on the ellipse, after the subtitution into the standard equation, we have that $$ \frac{4^2}{\color{darkorange}{81}} + \frac{\color{darkblue}{h}^2}{\color{darkcyan}{64}} = 1 . $$ <span style="font-size:27px"> The problem request us to find the exact value of `\(\color{darkblue}{h}\)`, then we have to solve the previous equation for `\(\color{darkblue}{h}\)`, this is: $$ `\begin{gathered} \frac{\color{darkblue}{h}^2}{\color{darkcyan}{64}} = 1 - \frac{16}{\color{darkorange}{81}} \\ \color{darkblue}{h}^2 = (64)\left(\frac{65}{81}\right) \\ \color{darkblue}{h} = \pm \frac{8\sqrt{65}}{9} \end{gathered}` $$ --- # Example 11 (8/8) </br> <span style="font-size:30px"> Finally, because the height is a _distance_, we discard the negative solution for `\(\color{darkblue}{h}\)`. Then, the requested height is </br> <span style="font-size:35px"> $$ \color{darkblue}{h} = \frac{ 8 \sqrt{65} }{9}. $$ --- # Example 12 (1/5) <span style="font-size:30px"> According to Kepler's Laws, planets have elliptical orbits, with the Sun at one of the foci. The farthest Pluto gets from the Sun is `\(7.4\)` billions kilometers. The closest it gets to the Sun is `\(4.4\)` billions kilometers. Find an equation that represents the orbit of Pluto. </br> <span style="font-size:30px;color:blue"> **Solution** </span> <span style="font-size:30px"> In order to solve this problem it is convenient to make a graphical representation of the information provided in the statement of the problem. --- # Example 12 (2/5) <img src="ellipse-ex12.png" width="110%" style="display: block; margin: auto;" /> </br> - <span style="font-size:27px"> Set `\(\color{blue}{F}\)` the position of the Sun (it is one focus). - <span style="font-size:27px"> Set `\(\color{darkorange}{V_1}\)` the farthest point Pluto gets from the Sun. - <span style="font-size:27px"> Set `\(\color{darkorange}{V_2}\)` the closest point Pluto gets to the Sun. - <span style="font-size:27px"> According to the statement, we have that $$ `\begin{gathered} d(\color{blue}{F}, \color{darkorange}{V_1}) = \color{#006400}{\bf (7.4)(10^{9})\text{ km}} \\ d(\color{blue}{F}, \color{darkorange}{V_2}) = \color{#FF00FF}{\bf (4.4)(10^{9})\text{ km}} \end{gathered}` $$ --- # Example 12 (3/5) </br> - <span style="font-size:27px"> We note that `\(\color{darkorange}{V_1}\)` and `\(\color{darkorange}{V_2}\)` are the vertices of the ellipse, then the distance between them is the length of the major axis, and it is: $$ \color{darkorange}{2a} = d(\color{darkorange}{V_1}, \color{darkorange}{V_2}) = d(\color{blue}{F}, \color{darkorange}{V_1}) + d(\color{blue}{F}, \color{darkorange}{V_2}) = \color{darkorange}{\bf (11.8)(10^9)} $$ this implies that $$ \color{darkorange}{\bf a} = \color{darkorange}{\bf (5.9)(10^9)} $$ - <span style="font-size:27px"> Because any explicit point is given in the statement, we can **choose** that location of the center: let's take the origin `\(\color{red}{C}(\color{green}{0}, \color{purple}{0})\)`. --- # Example 12 (4/5) - <span style="font-size:27px"> Next, to get `\(\color{blue}{c} = d(\color{red}{C}, \color{blue}{F})\)`, we note that $$ `\begin{aligned} \color{blue}{c} & = d(\color{red}{C}, \color{darkorange}{V_2}) - d(\color{blue}{F}, \color{darkorange}{V_2}) \\ & = \color{darkorange}{ (5.9)(10^9) } - \color{#FF00FF}{ (4.4)(10^{9}) } \\ & = \color{blue}{(1.5)(10^9)} \end{aligned}` $$ - <span style="font-size:27px"> Let's find the value of `\(\color{darkcyan}{b}^2\)`: because `\(\color{blue}{c}^2 = \color{darkorange}{a}^2 - \color{darkcyan}{b}^2\)`, we obtain that $$ `\begin{aligned} \color{darkcyan}{b}^2 & = \color{darkorange}{a}^2 - \color{blue}{c}^2 \\ & = ( \color{darkorange}{ (5.9)(10^9) } )^2 - ( \color{blue}{(1.5)(10^9)} )^2 \\ & = (34.81)(10^{18}) - (2.25)(10^{18}) \\ & = (32.56)(10^{18}) \end{aligned}` $$ --- # Example 12 (5/5) <span style="font-size:27px"> Finally, because `\(\color{red}{C}(\color{green}{0}, \color{purple}{0})\)`, `\(\color{darkorange}{a}^2 = (34.81)(10^{18})\)`, `\(\color{darkcyan}{b}^2 = (32.56)(10^{18})\)`, and our graphical representation considers that the major axis is **horizontal**, the standard equation that represents the orbit of Pluto is </br> <span style="font-size:30px"> $$ \frac{x^2}{(34.81)(10^{18})} + \frac{y^2}{(32.56)(10^{18})} = 1. $$