class: center, middle, inverse, title-slide # Circle and its properties ## Analytic Geometry ### Academy of Mathematics ###
High School UPAEP Angelópolis ### Fall 2022 --- class: inverse, center, middle # Geometrical elements of a circle --- # First approach <iframe scrolling="no" title="Geometrical properties of a circle" src="https://www.geogebra.org/material/iframe/id/bgevude2/width/1420/height/680/border/888888/sfsb/true/smb/false/stb/false/stbh/false/ai/false/asb/false/sri/false/rc/false/ld/false/sdz/false/ctl/false" width="1420px" height="680px" style="border:0px;"> </iframe> --- # Elements of a circle .pull-left[ <span style="font-size:23px"> We only need **2** elements to construct a circle: - <span style="font-size:27px"> the center `\(\color{red}{C(h,k)}\)`: <span style="color:blue">it is a point in the plane </br> - <span style="font-size:27px"> the radius `\(\color{red}{r}\)`: <span style="color:blue"> it is the distance between the center and a point on the circle</span> * <span style="font-size:25px"> Can `\(\color{red}{r}\)` be negative? * <span style="font-size:25px"> What happen if `\(\color{red}{r}=0\)`? </br> ] .pull-right[ </br> <img src="circle.png" width="110%" style="display: block; margin: auto;" /> ] --- class: inverse, center </br> <br> </br> <span style="font-size:35px;color:white"> PART I <span style="font-size:35px;color:white"> Standard equation of the circle --- # Circle in standard form </br> .pull-left[ </br> <span style="font-size:30px"> The **STANDARD EQUATION** of a circle with <span style="color:red">center</span> at `\(\color{red}{C}(\color{green}{h},\color{purple}{k})\)` and <span style="color:blue">radius</span> `\(\color{blue}{r}\)` is </br> <span style="font-size:35px"> $$ (x-\color{green}{h})^2 + (y-\color{purple}{k})^2 = \color{blue}{r}^2 $$ ] .pull-right[ <img src="circle-centered-(h,k).png" width="120%" style="display: block; margin: auto;" /> ] --- # Example 1 (1/2) <span style="font-size:28px"> **Problem 1** <span style="font-size:25px">Find the equation of a circle centered at the origin with radius `\(6\)`. Sketch the graph of this circle. <span style="font-size:27px;color:blue">**Solution** <span style="font-size:25px"> We identify the elements of the circle: <span style="font-size:25px"> $$ `\begin{gathered} \text{center: }& C(\color{green}{0},\color{purple}{0}), \\ \text{radius: }& r=\color{blue}{6} \end{gathered}` $$ We substitute into the standard equation and reduce: <span style="font-size:25px"> $$ `\begin{gathered} (x-\color{green}{0})^2 + (y-\color{purple}{0})^2 = (\color{blue}{6})^2 \\ \\ x^2+ y^2 = \color{blue}{36} \end{gathered}` $$ --- # Example 1(2/2) <span style="font-size:25px"> The circle represented by the equation `\(x^2 + y^2 = \color{blue}{36}\)` is given in the figure. <img src="circleradius6.png" width="64%" style="display: block; margin: auto;" /> --- # Example 2 (1/2) .pull-left[ <span style="font-size:28px"> **Problem 2** <span style="font-size:28px"> Find the standard equation of the circle in the figure. <img src="circle-e2.png" width="90%" style="display: block; margin: auto;" /> ] .pull-right[ <span style="font-size:25px;color:blue"> **Solution** <span style="font-size:25px"> We note that `\(\color{red}{C}(\color{green}{-5}, \color{purple}{0})\)`. On the other hand, the point `\(P(-2, 0)\)` lies on the circle, so the radius is equal to the distance between `\(C\)` and `\(P\)`, this is <span style="font-size:20px"> $$ \begin{aligned} \color{blue}{r} &= d(C, P) \\\ & = \sqrt{(\color{green}{-5} - (-2))^{2} + (0-0)^2} \\\ & = \sqrt{(-5+2)^2 + 0^2} \\\ & = \sqrt{(-3)^2 + 0} \\\ & = \sqrt{9} \\\ & = 3 \end{aligned} $$ ] --- # Example 2(2/2) </br> <span style="font-size:25px"> Then, the center is `\(\color{red}{C}(\color{green}{-5}, \color{purple}{0})\)` and the radius is `\(\color{blue}{r = 3}\)`. </br> <span style="font-size:25px"> Next, we substitute into the standard equation and reduce terms: </br> <span style="font-size:25px"> $$ `\begin{gathered} (x-(\color{green}{-5}))^2 + (y - \color{purple}{0})^2 = (\color{blue}{3})^2 \\ \\ (x + \color{green}{5})^2 + y^2 = \color{blue}{9} \end{gathered}` $$ </br> <span style="font-size:25px"> In conclusion, the requested equation is <span style="font-size:25px"> $$ (x + \color{green}{5})^2 + y^2 = \color{blue}{9} $$ --- class: inverse, center </br> </br> </br> <span style="font-size:35px;color:white"> PART II <span style="font-size:35px;color:white"> General equation of the circle --- # From the standard equation to the general equation </br> <span style="font-size:27px"> Given a circle centered at `\((\color{green}{h}, \color{purple}{k})\)` with radius `\(\color{blue}{r}\)`, to find the **general equation** of the circle, we have to follow the next 3 steps: </br> - <span style="font-size:27px"> **Step 1**: Find the standard equation of the circle. - <span style="font-size:27px"> **Step 2**: Expand the binomials that appear. - <span style="font-size:27px"> **Step 3**: Reorder the terms and reduce similar terms. --- # Example 3(1/2) .pull-left[ <span style="font-size:25px"> **Problem 3** <span style ="font-size:25px"> Find the general equation of the circle centered at `\(C(\color{green}{2}, \color{purple}{-3})\)` with radius `\(\color{blue}{5}\)`. <span style="font-size:25px;color:blue"> **Solution** <span style="font-size:25px"> We note that our data is the following: <span style="font-size:25px"> $$ `\begin{gathered} \text{center: }& C(\color{green}{2},\color{purple}{-3}), \\ \text{radius: }& r=\color{blue}{5} \end{gathered}` $$ ] .pull-right[ <span style="font-size:25px"> **Step 1**: The standard equation of the circle is given by <span style="font-size:25px"> $$ (x- \color{green}{2})^2 + (y - (\color{purple}{-3}))^2 = \color{blue}{5}^2 $$ this is <span style="font-size:25px"> $$ (x- \color{green}{2})^2 + (y + \color{purple}{3})^2 = \color{blue}{25} $$ <span style="font-size:25px"> **Step 2**: Now, we expand the binomials to get <span style="font-size:25px"> $$ (x^2 - 4x + 4) + (y^2 + 6y + 9) = 25 $$ ] --- # Example 3 (2/2) </br> <span style="font-size:25px"> **Step 3**: Now, let's reorder and reduce the terms. We procced as follows: </br> <span style="font-size:25px"> $$ `\begin{gathered} (x^2 - 4x + 4) + (y + 6y + 9) = 25 \\ \\ x^2 + y^2 - 4x +6y + 4 + 9 - 25 = 0 \\ \\ x^2 + y^2 - 4x + 6y - 12 = 0 \end{gathered}` $$ Then, the general equation of the circle centered at `\(C(2, -3)\)` with radius `\(5\)` is <span style="font-size:25px"> $$ \color{red}{x^2 + y^2 - 4x + 6y - 12 = 0} $$ --- class: inverse, center </br> </br> </br> <span style="font-size:35px;color:white"> PART III <span style="font-size:35px;color:white"> Getting the center and the radius from an equation --- #Center and radius from the standard equation .pull-left[ <span style="font-size:30px"> In this case, we begin with an equation of the form <span style="font-size:30px">$$(x+5)^2 + y^2 = 81 $$ <span style="font-size:30px"> So, because the equation looks like the _standard equation of a circle_, we **claim** that we just have to look for the center and the radius of a circle. ] .pull-right[ <span style="font-size:30px"> In this case, to find the center we just have to: - <span style="font-size:30px"> For the **center**: take the opposite sign of the numbers that appear next to the variables `\(x\)` and `\(y\)`, respectively. - <span style="font-size:30px"> For the **radius**: take the square root of the number on the right hand. ] --- # Example 4 <span style="font-size:27px"> **Problem 4** <span style="font-size:27px"> Find the elements of the figure represented by the following equation <span style="font-size:30px">$$ (x\color{green}{+5})^2 + y^2 = \color{blue}{81} $$ <span style="font-size:27px;color:blue"> **Solution**</span> <span style="font-size:27px"> We note that it is a standard equation of a circle. In this case, the center is `\(C(\color{green}{-5}, \color{purple}{0})\)`: the second coordinate is zero because no number appears next to `\(y\)`, so, we actually have `\((y-\color{purple}{0})^2\)`. On the other hand, the radius is `\(r = \color{blue}{\sqrt{81}} = \color{blue}{9}\)`. Then, the final answer is <span style="font-size:27px"> $$ `\begin{gathered} \text{center: }& C(\color{green}{-5},\color{purple}{0}), \\ \text{radius: }& r=\color{blue}{9} \end{gathered}` $$ --- # Example 5 <span style="font-size:27px"> **Problem 5** <span style="font-size:27px"> Find the elements of the figure represented by the following equation <span style="font-size:30px">$$ (x\color{green}{-9})^2 + (y \color{purple}{+7})^2 = \color{blue}{51} $$ <span style="font-size:27px;color:blue"> **Solution**</span> <span style="font-size:27px"> We note that it is a standard equation of a circle. Then, the final answer is <span style="font-size:27px"> $$ `\begin{gathered} \text{center: }& C(\color{green}{9},\color{purple}{-7}), \\ \text{radius: }& r=\color{blue}{\sqrt{51}} \end{gathered}` $$ --- # From the general equation to the standard equation <span style="font-size:30px"> Consider the equation given by </br> <span style="font-size:30px">$$\color{darkred}{A}x^2 + \color{darkblue}{B}y^2+Cx+Dy+F=0 $$ </br> <span style="font-size:30px"> If `\(\color{darkred}{A} = \color{darkblue}{B}\)`, then we _expect_ a **general equation of a circle**. In this case, the strategy is **transforming into the standard equation** by _completing squares_ for both `\(x\)` and `\(y\)`: later we just apply the strategy in the case of the standard equation. --- # Example 6 (1/3) <span style="font-size:27px"> **Problem 6** <span style="font-size:27px"> Find the geometrical elements of the figure with equation given by </br> <span style="font-size:27px"> $$ x^2 + y^2 - 6x + 8y +9 = 0 $$ </br> <span style="font-size:27px;color:blue"> **Solution**</span> <span style="font-size:27px"> We note that the coefficient of `\(x^2\)` and `\(y^2\)` is equal to `\(1\)`, then we can _expect_ that it is the **general equation of a circle**. Then, the _geometrical elements_ that we are looking for are the **center** and the **radius** of the circle. --- # Example 6 (2/3) <span style="font-size:27px"> **Step 1**: Group the terms with the same variable, and pass the constant to the right hand. <span style="font-size:27px"> $$ (\color{brown}{x^2 - 6x}) + (\color{darkorange}{y^2 + 8y }) = \color{darkcyan}{-9} $$ <span style="font-size:27px"> **Step 2**: Complete the perfect trinomial squares. Add the same values to the right hand. <span style="font-size:27px;color:red"> Warning</span> <span style="font-size:27px">: Be sure that both coefficients of `\(x^2\)` and `\(y^2\)` are equal to `\(1\)`. Otherwise, first divide each term by this coefficient. <span style="font-size:27px"> $$ (\color{brown}{x^2 - 6x} + \color{green}{9}) + (\color{darkorange}{y^2 + 8y } + \color{purple}{16}) = \color{darkcyan}{-9} + \color{green}{9} + \color{purple}{16} $$ --- # Example 6 (3/3) <span style="font-size:27px"> **Step 3**: Factorize the perfect square trinomials, and reduce the constants. <span style="font-size:27px"> Then $$ (\color{brown}{x^2 - 6x} + \color{green}{9}) + (\color{darkorange}{y^2 + 8y } + \color{purple}{16}) = \color{darkcyan}{-9} + \color{green}{9} + \color{purple}{16} $$ <span style="font-size:27px"> becomes $$ (\color{brown}{x - }\color{green}{3})^{2} + (\color{darkorange}{y + }\color{purple}{4})^{2} = 16 $$ <span style="font-size:27px"> **Step 4**: Get the center and the radius from the standar equation. $$ `\begin{gathered} \text{center: }& C(\color{green}{3},\color{purple}{-4}), \\ \text{radius: }& r=\color{blue}{\sqrt{16}} = \color{blue}{4} \end{gathered}` $$ --- # Example 7 (1/2) <span style="font-size:27px"> **Problem 7** <span style="font-size:27px"> Find the geometrical elements of the figure with equation given by $$ x^2 + y^2 + 3x + 5y + \frac{9}{4} = 0 $$ <span style="font-size:27px;color:blue"> **Solution: **</span> <span style="font-size:27px"> **Step 1**: $$ (x^2 + 3x) + (y^2 + 5y) = -\frac{9}{4} $$ <span style="font-size:27px"> **Step 2**: $$ \left( x^2 + 3x \color{red}{+ \frac{9}{4} } \right) + \left(y^{2} + 5y \color{red}{ + \frac{25}{4} }\right) = -\frac{9}{4}\color{red}{ + \frac{9}{4} + \frac{25}{4} } $$ --- # Example 7 (2/2) <span style="font-size:27px"> **Step 3**: $$ \left( x + \color{green}{ \frac{3}{2} } \right)^2 + \left( y + \color{purple}{ \frac{5}{2} } \right)^2 = \color{blue}{\frac{25}{4} } $$ <span style="font-size:27px"> **Step 4**: The geometrical elements of the circle are $$ `\begin{gathered} \text{center: }& C\left(\color{green}{-\frac{3}{2} },\color{purple}{-\frac{5}{2} }\right), \\ \text{radius: }& r=\color{blue}{\sqrt{\frac{25}{4} }} = \color{blue}{ \frac{5}{2} } \end{gathered}` $$ --- # Example 8 (1/3) <span style="font-size:27px"> **Problem 8** <span style="font-size:27px"> Find the geometrical elements of the figure with equation given by $$ 3x^2 + 3y^2 + 4x - 6y - 4 = 0 $$ <span style="font-size:27px;color:blue"> **Solution**</span> <span style="font-size:27px"> Note that in this case, both coefficients of `\(x^2\)` and `\(y^2\)` are equal to `\(\color{darkred}{3}\)`. So, the represented figure by the equation _could_ be a circle. <span style="font-size:27px"> **Step 1**: $$ (3x^2 + 4x) + (3y^2 - 6y) = 4 $$ --- # Example 8 (2/3) <span style="font-size:27px"> **Step 2**: In this case, first we have to divide each term by `\(\color{darkred}{3}\)` to get coefficients equal to `\(1\)` for `\(x^2\)` and `\(y^2\)`. Then, we get $$ \left( \frac{3x^2}{\color{darkcyan}{3}} + \frac{4x}{\color{darkcyan}{3}} \right) + \left( \frac{3y^2}{\color{darkcyan}{3}} - \frac{6y}{\color{darkcyan}{3}} \right) = \frac{4}{\color{darkcyan}{3}} $$ <span style="font-size:27px"> this is $$ \left( x^2 + \frac{4}{3} x \right) + \left( y^2 - 2y \right) = \frac{4}{3} $$ <span style="font-size:27px"> Next, we complete the squares: $$ \left( x^2 + \frac{4}{3} x \color{red}{+ \frac{4}{9}} \right) + \left( y^2 - 2y \color{red}{ + 1} \right) = \frac{4}{3} \color{red}{ + \frac{4}{9} + 1} $$ --- # Example 8 (3/3) <span style="font-size:27px"> **Step 3**: $$ \left( x + \color{green}{\frac{2}{3}} \right)^2 + \left( y - \color{purple}{1} \right)^2 = \color{blue}{\frac{25}{9}} $$ <span style="font-size:27px"> **Step 4**: The geometrical elements of the circle are $$ `\begin{gathered} \text{center: }& C\left(\color{green}{-\frac{2}{3} },\color{purple}{ 1 }\right), \\ \text{radius: }& r=\color{blue}{\sqrt{\frac{25}{9} }} = \color{blue}{ \frac{5}{3} } \end{gathered}` $$ --- class: inverse, center </br> </br> </br> <span style="font-size:35px;color:white"> PART IV <span style="font-size:35px;color:white"> Applications --- # Example 9 (1/5) <span style="font-size:28px"> **Problem 9** <span style="font-size:28px"> A pizza delivery area can be represented by a circle, and extends to the points `\((0,18)\)` and `\((-6, 8)\)`: these points are on the **diameter** of this circle. <ol style="font-size:28px"> <li> At which point is located the pizzeria? <li> Find the largest distance of service from the pizzeria. <li> Write an equation that represents the circle that encloses the delivery area. <li> What is the area of the enclosed surface? <li> If your house is at \( (-3,10) \), can you receive a pizza? </li> </ol> --- # Example 9 (2/5) <span style="font-size:27px;color:blue"> **Solution** <span style="font-size:27px"> `\(\color{blue}{1.}\)` We have to make some remarks in order to solve this problem: + <span style="font-size:27px"> The pizzeria is located at the **center** of the circle. + <span style="font-size:27px"> The center of a circle can be found as the midpoint of a diameter. + <span style="font-size:27px"> A diameter of a circle is a segment joining 2 points on the circle that passes through the center. + <span style="font-size:27px"> The **midpoint** of a segment with endpoints `\((\color{blue}{x_1, y_1})\)` and `\((\color{green}{x_2, y_2})\)` is $$ M\left( \frac{\color{blue}{x_1} + \color{green}{x_2}}{2}, \frac{\color{blue}{y_1} + \color{green}{y_2}}{2} \right) $$ --- # Example 9 (3/5) <span style="font-size:27px"> Then, because the endpoints are `\(A(\color{blue}{0}, \color{blue}{18})\)` and `\(B(\color{green}{-6}, \color{green}{8})\)`, the pizzeria is located at $$ C\left( \frac{\color{blue}{0} + \color{green}{(-6)}}{2}, \frac{\color{blue}{18} + \color{green}{8}}{2} \right) = C(\color{green}{-3}, \color{purple}{13}) $$ <hr> <span style="font-size:27px"> `\(\color{blue}{2.}\)` The largest distance of service from the pizzeria can be found as the distance to any of the endpoints of the diameter. Here, we are finding the distance between `\(A\)` and `\(C\)`: this is the radius of the circle! $$ `\begin{aligned} \color{blue}{r} & = d(A, C) \\ &= \sqrt{ (0 - (-3))^2 + (18 - 13)^2 } \\ & = \sqrt{9 + 25} \\ & = \sqrt{34} \end{aligned}` $$ --- # Example 9 (4/5) <span style="font-size:27px"> `\(\color{blue}{3.}\)` We have the center `\(C(\color{green}{-3}, \color{purple}{13})\)` and the radius `\(r = \color{blue}{\sqrt{34}}\)` of the circle, then the standard equation of this circle is $$ (x - (\color{green}{- 3}) )^2 + (y - \color{purple}{13})^2 = \left( \color{blue}{\sqrt{34}}\right)^2 $$ <span style="font-size:27px"> this is $$ (x + 3)^2 + (y - 13)^2 = 34 $$ <hr> <span style="font-size:27px"> `\(\color{blue}{4.}\)` Because we are working with a circle, the area enclosed can be found as follows: $$ Area = \pi r^2 = \pi \left( \sqrt{34}\right)^2 = \color{red}{34\pi} $$ --- # Example 9 (5/5) <span style="font-size:27px"> `\(\color{blue}{5.}\)` Let's find the distance between my house at `\(D(-3, 10)\)` and the pizzeria at `\(C(-3, 13)\)`: $$ `\begin{aligned} d(D,C) & = \sqrt{ (-3 - (-3))^2 + (10 - 13)^2 } \\ & = \sqrt{ 0 + 9 } \\ & = 3 \end{aligned}` $$ <span style="font-size:27px"> Because `\(9 < 34\)`, we know that `\(3 = \sqrt{9} < \sqrt{34} = r\)`. <span style="font-size:27px"> In conclusion, as my house is closer to the pizzeria than the radius of the circle, **I can receive a pizza**.